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Abstract

Computational models of particle dynamics often exchange solution data with discretized

continuum-fields using interpolation functions. These particle methods require a series expansion

of the interpolation function for two purposes: numerical analyses used to establish the models

consistency and accuracy, and logical-coordinate evaluation used to locate particles within a grid.

This report presents a new method of developing discrete-expansions for interpolation; they are

similar to multi-variable expansions but, unlike a Taylor’s series, discrete-expansions are valid

throughout a discretized domain. Discrete-expansions are developed herein by parametrically

integrating the interpolation function’s total-differential between two particles located within

separate, non-contiguous cells. Discrete-expansions are valid for numerical analyses since they

acknowledge the functional dependence of interpolation and account for mapping discontinuities

across cell boundaries. The use of discrete-expansions for logical-coordinate evaluation provides

an algorithmically robust and computationally efficient particle localization method. Verification

of this new method is demonstrated herein on a simple test problem.
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Integrating a Bilinear Interpolation Function
Across Quadrilateral Cell Boundaries

Introduction

Computational models of particle dynamics that are solved concurrently with discretized

continuum-field equations are classified herein as either interactive or reactive particle methods.

Interactive methods strongly couple the continuum and particle governing equations through the

bilateral exchange of mass, momentum, and energy. These methods include models of liquid

sprays [1-4], wall-film dynamics [5-8], bubble dynamics [9-13], smoke dispersion [14], and

material-interface tracking [15,16]. In contrast, reactive particles simply respond to the entraining

fluid, and their governing equations are weakly coupled to the field equations. Reactive methods

include computing particle trajectories with a known velocity and additional physics, but their

solution does not perturb the entraining fluid. These methods include models of atmospheric

transport [17-24], porous-media diffusion [25-34], multi-phase dispersion [35-38], and transient

mixing [39-41]. Both interactive and reactive methods often exchange solution data between

continuum-fields and particles through interpolation functions. The focus of this research was on

the role of one common interpolation function used within existing particle methods.

Particle methods use interpolation functions directly to evaluate terms in their governing

equations. One simple reactive method is the marker or tracer-particle method, which advects a

massless particle with an interpolated velocity [42-50]. These methods are used extensively for

model diagnostics, solution visualization [51-53], free-surface tracking [54-59], and front

tracking [60-66]. A Taylor’s series of the velocity interpolation function, expanded from the

particle’s cell, is required to perform numerical analyses on these methods. Particle trajectories

are often established using Runge-Kutta or predictor-corrector time-integration methods. The

particle’s advection velocity, the final velocity in these multi-step integration methods, may be

evaluated in a neighboring cell. The expansion would then extend through multiple cells in the

discretized domain. Derivatives of interpolation functions, however, are generally not continuous

across cell boundaries and, therefore, a Taylor’s series is not valid in this situation. An alternative

expansion is required to complete numerical analyses for these and similar particle methods.

Particle methods also use interpolation functions indirectly to evaluate particle-grid

connectivity data, which are required to exchange data between continuum-fields and particles.

The connectivity data consist of the identity of the grid cell in which the particle resides and the

particle’s natural or logical-coordinate position vector relative to that cell. Particle localization

establishes this data using cell-searching and logical-coordinate evaluation methods [67-72]. Cell-

searching or guessing methods typically use the particle’s logical coordinates to both direct and
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halt the search. Evaluating these coordinates involves a transformation from global, physical-

space to a local coordinate system [46,67,69,71-75]. If the logical coordinates are bound within

known transformation limits, then the particle resides within the guessed cell. If these coordinates

are unbound then another cell guess, directed by the unbound coordinates, and logical-coordinate

evaluation are required. Particle methods are, thus, predicated on logical-coordinate evaluation

methods which, as described below, are based on interpolation function expansions.

Particle methods, therefore, require the expansion of interpolation functions and utilize the

expression in two different ways. Interpolation, mapping field data onto particles, requires direct

substitution of the expansion into numerical analyses. In contrast, particle localization involves

the inverse mapping of physical-space to logical-space coordinates. The mapping function then

serves as both interpolation and spatial-transformation functions for isoparametric cells. The

mathematical expression required for both numerical analysis and particle localization is identical

and, therefore, the methods developed herein are valid for both purposes. The algorithmic

requirements for inverse mapping, robustness and efficiency, are greater than those of algebraic

manipulation required for interpolation. The remaining discussion and development, therefore,

will emphasize interpolation expansions used for particle logical-coordinate evaluation.

The remaining discussion will also be restricted to the bilinear interpolation function as

applied within quadrilateral cell geometries. These computational cells are one of the most

commonly used geometries for two-dimensional discretization. When applied for spatial

transformation, this bilinear mapping function is a linear combination of cell-vertex coordinate

vectors weighted by basis functions. The basis functions are, however, non-linear with respect to

the logical coordinates. The bilinear function is, therefore, a non-linear spatial-transformation

function. A companion paper will document the following development applied to the linear

interpolation function applied within two-dimensional triangular grid elements [76].

Existing logical-coordinate evaluation methods have been generalized in Reference [67]

for various cell geometries. These methods were developed from a truncated, single-variable

Taylor’s series expansion of the interpolation function [46,67,69,71,72]. The expansion ignores

the function’s dependence on the cell-vertex coordinates and only considers the first-order

dependence on the logical coordinates. The resulting system of equations is solved iteratively and

requires the repeated evaluation and inversion of a Jacobian matrix. Logical-coordinate solutions

using this technique are guaranteed if the particle resides within a guessed cell. Coordinate

solutions may fail to exist, however, for cell geometries with non-linear transformations including

bilinear interpolation; if the particle resides outside of a guessed cell and the grid is sufficiently

distorted, the Jacobian matrix becomes singular and the iterative method fails to converge. This
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solution method is, therefore, neither algorithmically robust nor computationally efficient. Two

alternatives to the truncated, single-variable Taylor’s series expansion are discussed below.

One obvious alternative to existing logical-coordinate evaluation methods would use a

multi-variable Taylor’s series. This expansion is appropriate for numerical analyses since it

acknowledges the full functional dependence of interpolation. The expansion has a finite number

of terms; for bilinear interpolation, only first and mixed second-order derivatives are non-zero.

For particle localization, this expansion requires an iterative solution since the higher-order

derivatives are scaled by unknown logical coordinates. In contrast to the existing methods, all

derivatives in the multi-variable expansion are constant and computed only once, thereby

providing a more efficient solution method. More importantly, the Jacobian matrix is evaluated

with an arbitrarily fixed logical-coordinate vector. A bound coordinate vector may then be

selected which guarantees a non-singular transformation matrix and, thus, a robust logical-

coordinate evaluation method. All Taylor’s series, however, are inherently invalid for expansions

that extend beyond cell boundaries where interpolation derivatives are generally discontinuous.

Another alternative logical-coordinate evaluation method was recently proposed and

demonstrated for three-dimensional hexahedral cells [73-75]. This method, developed using

trilinear interpolation, considered the finite difference between two particles located in separate,

non-contiguous cells. The resulting expression is termed herein a discrete-expansion; it is similar

to a multi-variable Taylor’s series expansion and, by accounting for discontinuous interpolation

derivatives across cell boundaries, is valid throughout a discretized domain. The iterative solution

of this new expression is both robust and efficient; its constant derivatives include a non-singular

Jacobian matrix. This finite-difference solution is, therefore, appropriate for numerical analyses

of particle methods and satisfies the algorithmic requirements for particle localization. The final

form of this discrete-expansion, developed with much algebraic manipulation, was predominantly

guided by intuition, however, and not physical relevance. Therefore, other possible discrete-

expansions for interpolation functions were overlooked in recent reports [73-75].

This report presents a new method of developing discrete-expansions for interpolation.

This development method integrates the interpolation function’s total differential between two

particles located within separate, non-contiguous grid cells. The integration is completed

parametrically, and the resulting expressions are algebraically manipulated to obtain numerous

discrete-expansions. Each of these multi-variable expressions may be used for numerical analyses

since the total-differential method inherently accounts for discontinuous interpolation derivatives

across cell boundaries. One of the new total-differential solutions is equivalent to the above finite-

difference solution and, thus, satisfies the algorithmic requirements for logical-coordinate
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evaluation. The total-differential method, therefore, represents a general solution technique,

whose results are valid for both numerical analyses and localization for particle methods.

This report continues by parametrically integrating the bilinear interpolation function’s

total-differential. Application of the new discrete-expansions for numerical analyses or

localization within particle methods is beyond the scope of this report. The utility of the total-

differential solutions for these purposes, however, is discussed, and a summary concludes this

report. Two appendices then present a test problem, which clearly demonstrates the new method’s

validity, and a similar development of discrete-expansions for one-dimensional line elements.

Bilinear Interpolation

Two-dimensional computational space is often discretized into non-orthogonal

quadrilateral cells, particularly around complex geometries. A bilinear function is generally used

within these cells for data interpolation and spatial transformation. Interpolation produces a

continuous mapping of discrete field data, often located at cell-vertices, to any position in the cell.

Spatial transformation involves mapping the cell geometry from a physical, , to a

logical, , coordinate system; see Figure 1. While the physical coordinates of the cell-

vertices are arbitrary, the quadrilateral’s transformed coordinates are bound between zero and one;

 is bound if  and . The bilinear function is dependent upon both  and the

cell-vertex (cv) coordinate vector, , as presented in Equation 1.

(1)

Bilinear interpolation is linear with respect to the cell-vertex vector, , but non-linear

with respect to the logical coordinates, . Interpolated data fields, produced by the application of

Equation 1 in each grid cell, are continuous along the common boundaries of adjoining cells.

Total Differential

Using the bilinear function, , the objective is to establish a relationship between

the finite change of the physical coordinates, , the logical coordinates, , and the cell-vertex

coordinates, . The bilinear function’s total-differential provides a relationship between

infinitesimal changes of these coordinate vectors, , as presented in Equation 2.

X x y,( )T
=

ξ ξ η,( )T
=

ξ 0 ξ 1≤ ≤ 0 η 1≤ ≤ ξ
X

cv
X

0
X

1
X

2
X

3
, , ,( )

T
=

X ξ X
cv

,( ) 1 ξ–( ) 1 η–( ) X
0

=

ξ( ) 1 η–( ) X
1

+

ξ( ) η( ) X
2

+

1 ξ–( ) η( ) X
3

+

X
cv

ξ

X ξ X
cv

,( )
∆X ∆ξ

∆X
cv

dX f dξ dX
cv

,( )=



LA-UR-00-3329

5

(2)

Integration of this expression between particle end-states will provide the desired

relationship, , which represents a discrete-expansion for interpolation.

Logical Coordinate Derivative
The bilinear function’s total-differential includes two interpolation derivatives or

transformation matrices that are scaled by differential coordinate vectors. The first derivative in

Equation 2 represents a coordinate-transformation or Jacobian matrix, . The Jacobian

matrix structure is defined in Equation 3 for a two-dimensional transformation.

(3)

The size of the square Jacobian matrix is determined by the number of spatial coordinates.

Elements of this coordinate-transformation matrix are most easily expressed as column vectors.

The derivatives  and  for bilinear interpolation are presented in Equations 4 and 5.

(4)

(5)

The above derivatives are similar to the original bilinear function; each column vector in

the Jacobian matrix is a linear combination of cell-vertex vectors weighted by basis functions. In

contrast to Equation 1, the basis functions in Equations 4 and 5 are linear with respect to the
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logical coordinates since they are dependent on only one element of . The Jacobian matrix for

bilinear interpolation, which combines these column vectors, is, therefore, a linear function with

respect to both the logical-coordinate and cell-vertex coordinate vectors: .

Cell-Vertex Coordinate Derivative
The second derivative in the bilinear interpolation function’s total-differential, Equation 2,

represents a geometry-transformation matrix. The matrix structure of , the cell-vertex

coordinate derivative, is defined in Equation 6 for a two-dimensional transformation.

(6)

The geometry-transformation matrix is non-square. The number of rows and columns in

this matrix are determined by the problem dimension size and the number of elements within the

cell-vertex coordinate vector, , respectfully. The size of  is the problem dimension size

multiplied by the number of cell vertices. As presented, the geometry-transformation matrix may

be partitioned into sub-matrices, each of which is associated with a single cell-vertex position.

One sub-matrix, associated with any cell-vertex number ‘v’, is presented in Equation 7.

(7)

The square structure and size of each partition within the geometry-transformation matrix

are similar to Equation 3, the Jacobian matrix. In contrast to the full Jacobian matrix, the

geometry transformation’s sub-matrices are diagonal as presented in Equation 8.

(8)

The elements of the sub-matrices within  are most easily presented for each cell-

vertex position. These sub-matrix elements,  and , are identical to the basis

functions used within bilinear interpolation as presented in Equation 9.
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(9)

For each cell-vertex vector, the derivatives with respect to both  and  are identical.

Each geometry-transformation sub-matrix may then be defined, but not shown here, as an identity

matrix scaled by an interpolation basis function. The derivatives in Equation 9 are non-linear with

respect to the logical coordinates since they are multiples of every element within the  vector. In

contrast, since bilinear interpolation is linear with respect to , the geometry-transformation

matrix is not a function of the cell-vertex coordinate vector: .

Considering the functionality of both the Jacobian and geometry-transformation matrices,

the bilinear interpolation function’s simplified total-differential is presented in Equation 10.

(10)
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The computational sub-domains in which the particles reside are not desired to be connected in

physical-space; see Figure 2. Integration of the total-differential is represented in Equation 11.
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More importantly, continuity of the interpolation derivatives is required for the total-differential

to be valid within a specified region. Solution of Equation 11 in a single cell is straightforward;

the interpolation derivatives are guaranteed to be continuous in this region. In contrast, if the

limits of integration cross a cell boundary, solution of Equation 11 is more complex.

Solution of Equation 11 between particles located in separate but adjoining cells involves

integrating the interpolation function’s total-differential through two unique coordinate systems.

While the form of the interpolation expression is identical for each cell, the two functions are

different; they have distinct cell-vertex coordinate vectors. Along their common cell-edge, the

two interpolation functions are continuous but their derivatives are generally discontinuous.

Therefore, for any integration pathline that crosses a cell boundary, the interpolation derivatives

are not continuous, and the total-differential is not valid between these particle positions.

Discrete-expansions can then only be obtained from Equation 11 if the integration pathline is

partitioned or if the integration coordinate-space is appropriately parameterized.

An integration pathline that passes between adjoining cells may be partitioned into two

line-segments, each defined within a separate coordinate system. The interpolation derivatives are

guaranteed to be continuous throughout each computational sub-domain. The integrals within

Equation 11 are similarly partitioned into cell-based segments along which the total-differential is

valid. Integration along this two-segment pathline would then proceed within the first cell from

State 1 to the cell boundary, then within the second cell from the common cell-edge to State 2.

While this integration procedure represents a valid method of solution for Equation 11, it is

algorithmically complex and computationally expensive. Furthermore, when particle end-states

are located within non-contiguous grid cells, partition of the integration pathline through the

multiple intermediary computational sub-domains is prohibitively complex and expensive.

Parameterization
Alternatively, the coordinate-space between the limits of integration can be parameterized.

Solution of Equation 11 across boundaries of adjoining cells fails in general because it requires

integrating unique interpolation functions through separate coordinate systems. Parameterization

removes the concept of multiple coordinate systems by creating a single coordinate-space

between any two particle positions. The form of the parameterization function is arbitrary, this

research used a linear function, however, it must be continuously differentiable since it is

embedded within the interpolation function whose derivatives appear within the total-differential.

The parameterized interpolation derivatives are then guaranteed to be continuous along the entire

integration pathline. A parameterized total-differential may then be integrated directly without

requiring partition of the integration pathline into cell-based line-segments.
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Parameterization involves creating a new coordinate-space between two particle states.

Since particle states are a collection of physical, logical, and cell-vertex coordinates, each of these

vectors must be parameterized. A simple, linear parameterization technique using the variable ‘s’,

where , was selected in this research. The parameterized coordinates, ,  and

, then vary linearly along any integration pathline between particle positions. The limits of

integration for the parameterized total-differential are transformed from particle state-variables

into the bounding limits of the variable ‘s’. Integration of the parameterized total-differential for

bilinear interpolation, with appropriate limits of integration, is represented in Equation 12.

(12)

The solution of Equation 12 requires a path of integration. While the parameterization

function does not prescribe the shape of the integration pathline, it does define the

parameterization variable’s behavior along any path between two particles. The only restriction

on the limits of integration are that the end-state variables form a consistent set of coordinates as

described by the interpolation function: . Parameterization transforms the multi-

variable integration process, involving each element within the  and  vectors, to a simple

one-dimensional problem with respect to the parameterization variable. Cell-based coordinate

systems are then irrelevant, and the limits of integration may be any two particle positions within

the discretized domain. The integration pathline can then be defined between any two

computational sub-domains, including any two non-contiguous grid cells.

The remaining solution process for Equation 12 requires definition of a specific pathline

of integration between the particle States 1 and 2. An integration pathline for the parameterized

total-differential traverses through the plane defined by the logical-coordinate and cell-vertex

coordinate vectors,  and . These two vectors are the arguments of the bilinear function as

defined for spatial transformation: . Three unique integration pathlines described

within the  plane were selected by this research to solve Equation 12: direct, upper-step,

and lower-step integration pathlines. Solution of Equation 12 using each of these pathlines

produces many unique but equally valid discrete-expansions for interpolation.

Direct Integration Pathline
The first integration pathline used to solve Equation 12 is a straight or direct line between

particle States 1 and 2; see Figure 3. The parametrized coordinates vary linearly along this direct

pathline, and reduce to the particle end-state coordinates at the bounding limits of integration.

These parameterized coordinates are presented in Equation 13.
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(13)

Solution of Equation 12 along the direct integration pathline is represented in Equation 14,

where the interpolation derivatives are appropriately labeled.

(14)

Since the parameterized coordinates are linear functions, their derivatives are constant

finite-difference vectors: ,  and . These

difference vectors are defined between particle States 1 and 2: , ,

and . Integration of the parameterized total-differential along the direct

pathline can then be simplified as presented in Equation 15.
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The discrete-expansions in Equation 16 are combinations of transformation matrices and a

higher-order interpolation derivative. Evaluation of the coordinate and geometry transformation

matrices is easily visualized using Figure 3. Arguments for these first-order derivatives are either

particle end-state coordinates or their averages:  and . In

contrast, the argument for the higher-order derivative is the difference in cell-vertex coordinates,

. The transformation matrices are scaled by finite-difference vectors of the logical-

coordinate and cell-vertex coordinate variables:  and . The second-order interpolation

derivative, the vector , is multiplied by two scalar finite-differences defined from the

elements in the two-dimensional logical-coordinate vector:  and .

Upper-Step Integration Pathline
The second integration pathline used to solve Equation 12 is comprised of two line-

segments between particle States 1 and 2. The first pathline segment is a line of constant  from

State 1 to State A; see Figure 3. State A is a collection of logical-coordinates defined at State 1

and cell-vertex coordinates defined at State 2: . The second pathline segment is

a line of constant  from State A to State 2. These two pathline segments form an upper-step

within the  plane. The parametrized coordinates vary linearly along each segment of the

upper-step pathline, and reduce to the particle end-state coordinates at the bounding limits of

integration. These parameterized coordinates are presented in Equations 17 and 18.

(17)

(18)

 The upper-step integration pathline does not constitute cell-based partition of the original,

non-parameterized total-differential. Instead, the upper-step pathline is used to integrate the

parameterized total-differential, which is not dependent upon cell-based coordinate systems.
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Recall that a parameterized total-differential may be integrated between any two particles within

the discretized domain, including particles that occupy non-contiguous cells. State A simply

represents any position along any integration pathline within the parameterized coordinate-space,

which is the  plane when interpolation is used for spatial-transformation. Integration of

the non-parameterized total-differential, Equation 11, can be rewritten to simulate the upper-step

integration pathline as presented in Equation 19.

(19)

Using the upper-step pathline, integration of the parameterized version of Equation 19 is

represented in Equation 20, where the interpolation derivatives are appropriately labeled.

(20)

Along each segment of the upper-step integration pathline, one of the parameterized

coordinates is held constant while the other coordinates vary linearly between particle states.

Derivatives of the parameterized coordinates are then either the null vector or a finite-difference

vector. Along the first pathline segment from State 1 to State A, where  is held constant,

 and . Alternately, along the second pathline segment from

State A to State 2, where  is held constant,  and . Along the

entire upper-step pathline . Integration of the parameterized total-differential

along the upper-step pathline can then be simplified as presented in Equation 21.

(21)

The parameterized transformation matrices in Equation 21 are formed by substituting

 and  from Equations 17 and 18 into Equations 4, 5, and 9. These interpolation
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derivatives, which are products of linear parameterized coordinates, are more simple than those

defined along the direct integration pathline. Since one parameterized coordinate is fixed along

each of the upper-step pathline segments, the degree of non-linearity is one order lower than those

defined along the direct integration pathline. Solution of Equation 21 is then straightforward, and

many discrete-expansions may be obtained. The three discrete-expansions most easily obtained

using the upper-step integration pathline are presented in Equation 22.

(22)

The discrete-expansions in Equation 22 are similar to those in Equation 16; they are

combinations of transformation matrices and a higher-order derivative. Within Equation 22, the

cell-vertex arguments for the interpolation derivatives with respect to , both  and

, are fixed at ; the logical-coordinates vary along the pathline segment where 

is fixed at State 2. Similarly, within Equation 22 the logical-coordinate argument for the

geometry-transformation matrix, , is fixed at ; the cell-vertex coordinates vary along

the pathline segment where  is fixed at State 1. In contrast, the logical-coordinates used within

the coordinate-transformation matrix, , can be either particle end-state coordinates or their

averages, . The second-order derivative is present in the expansions only when the two particle

end-state coordinates,  and , appear within .

The second expression within Equation 22 is the two-dimensional equivalent of the

discrete-expansion obtained using the finite-difference method [73-75]. Therefore, the new total-

differential and the existing finite-difference methods of developing discrete-expansions produce

identical results for similar computational cell geometries; bilinear interpolation defined within

quadrilateral cells is a subset of the trilinear function defined within hexahedral cell geometries.

Lower-Step Integration Pathline
The third integration pathline used to solve Equation 12 is similar to the upper-step

pathline. This final pathline alternative is also comprised of two line-segments between particle

States 1 and 2. The first pathline segment is a line of constant  from State 1 to State B; see

Figure 3. State B is a collection of logical-coordinates defined at State 2 and cell-vertex
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coordinates defined at State 1: . The second pathline segment is a line of

constant  from State B to State 2. These two pathline segments form a lower-step within the

 plane. These parameterized coordinates are presented in Equations 23 and 24.

(23)

(24)

 Integration of the non-parameterized total-differential, Equation 11, can be rewritten to

simulate the lower-step integration pathline as presented in Equation 25.

(25)

Using the lower-step pathline, integration of the parameterized version of Equation 25 is

represented in Equation 26, where the interpolation derivatives are appropriately labeled.

(26)
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Along each segment of the lower-step integration pathline, one of the parameterized

coordinates is held constant, while the other coordinates vary linearly between particle states.

Derivatives of the parameterized coordinates are then either the null vector or a finite-difference

vector. Along the first pathline segment from State 1 to State B, where  is held constant,

 and . Alternately, along the second pathline segment from

State B to State 2, where  is held constant,  and . Along the

entire lower-step pathline . Integration of the parameterized total-differential

along the lower-step pathline can then be simplified as presented in Equation 27.

(27)

The parameterized transformation matrices in Equation 27 are formed by using  and

 from Equations 23 and 24 in Equations 4, 5, and 9. Solution of Equation 27 is then

straightforward, and many discrete-expansions may be obtained. The three discrete-expansions

most easily obtained using the lower-step integration pathline are presented in Equation 28.

(28)

The discrete-expansions obtained using the lower-step integration pathline, Equation 28,

are similar to those obtained using the upper-step pathline, Equation 22. The logical-coordinates

and cell-vertex coordinates used as arguments within these solutions, however, are defined at

opposite particle end-states; these integration pathlines are exact mirror images of each other.

Within Equation 28, the cell-vertex arguments for the interpolation derivatives with respect to ,

both  and , are fixed at . Similarly, within Equation 28 the logical-

coordinate argument for the geometry-transformation matrix, , is fixed at .
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bilinear interpolation defined within quadrilateral cell geometries. In contrast, the existing finite-

difference method [73-75] produced only a single discrete-expansion of trilinear interpolation

defined within hexahedral cells. Furthermore, the finite-difference expansion is a subset of the

total-differential solutions; it is the three-dimensional equivalent of one of the total-differential

expansions. For bilinear interpolation, the discrete-expansion that was developed using both the

total-differential and the finite-difference methods is repeated in Equation 29.

(29)

Additional discrete-expansions for interpolation, beyond the eight presented in this report,

might be possible using either the total-differential or the finite-difference methods. While the

finite-difference method is simple, obtaining an expansion with this technique requires

knowledge of the desired solution. In contrast, the integration of a parameterized total-differential

is mathematically well founded, and the discrete-expansions for interpolation are obtained

without a-priori knowledge of the solution. The total-differential method, therefore, represents a

general solution technique for developing discrete-expansions for interpolation.

Particle methods require expansions of interpolation functions for numerical analyses and

logical-coordinate evaluation. Application of the discrete-expansions developed herein for these

two purposes is beyond the scope of this report. Verification of the new expansions, however, is

provided in Appendix A; one of the new discrete-expansions is demonstrated to correctly solve

the general problem for two particles located in separate, non-contiguous grid cells. Appendix B

presents the total-differential method and discrete-expansions for one-dimensional line elements.

Within the following sections, application of the discrete-expansion in Equation 29 for numerical

analyses and localization within particle methods is outlined and discussed.

Numerical Analysis
Numerical analysis refers to an analytical investigation of the computational model used

to simulate the selected governing equations. The goal of these studies includes establishing the

model’s consistency and numerical accuracy. Consistency refers to whether a converged solution

of the model, an exact solution plus a minimized error term, satisfies the governing equations.

Accuracy refers to the model’s numerical error, its deviation from an exact solution.

Computational verification of a model’s accuracy is possible for those limited number of problem

types studied; for complex models, this is often the only option available to establish accuracy.

Analytical proof of a computational model’s consistency and numerical accuracy, valid for all

problem types, is preferred but not often included in the literature.
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Analytical determination of a particle method’s consistency and numerical accuracy are

based upon the leading-order error term of the computational model. If this error term approaches

zero as the mesh is refined, then the particle method is consistent with the governing equations.

The rate at which the leading-order error term vanishes, the convergence rate, is one measure of

the model’s numerical accuracy. The leading-order error term is evaluated by substituting series

expansions for all discrete-terms that appear within the computational model. As previously

discussed, particle methods often use interpolation functions within their computational models,

but a Taylor’s series is not a valid expansion for interpolation. Instead, a discrete-expansion for

interpolation is required to complete numerical analyses for these computational models.

For example, reactive particle methods compute trajectories with a velocity interpolated

from the discrete solution of the entraining fluid. Numerical analyses of these models requires a

discrete-expansion of the velocity-interpolation function, and the expansion must be written

relative to a single state, defined here as State 1. Recall that reactive particle trajectories are often

computed using multi-step time-integration methods. At any of the intermediate integration steps,

the particle’s velocity might be evaluated within a separate, non-contiguous grid cell, defined here

as State 2. The objective is then to write a general discrete-expansion of the velocity-interpolation

function from State 1 to State 2: . The discrete-expansion presented in

Equation 29 may be rewritten for this purpose as presented in Equation 30.

(30)

A computational model’s leading-order error term is a function of finite-differences of

relevant length-scales and other independent variables. For velocity interpolation, these finite-

differences are the vectors  and . A model’s leading-order error can only be determined

if all terms scaled by these finite-difference vectors are defined at a single state, State 1. The

discrete-expansion in Equation 30, however, includes two interpolation derivatives defined with

mixed state variables:  and . Recursive application of

Equation 30 can transform the mixed-state interpolated velocity, , into one that is

solely dependent upon State 1 variables, . This single-state interpolated velocity can

be substituted into Equation 30, and then the numerical analyses of the model may be completed.

For computational models that use interpolation, discrete-expansions represent a key

advancement in the capability to both analyze existing models and develop advanced models. For
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existing computational models, discrete-expansions provide the capacity to analytically evaluate

their consistency and accuracy. Consistency is required and defined objectively; converged

solutions of the model either satisfy the governing equations or the model is not consistent.

Discrete-expansions, by providing an analytical description of a model’s leading-order error term,

also provide the capacity to develop advanced computational models. The accuracy of a

numerical solution is subjectively pre-determined; simulation fidelity is determined by the model

selected and its implementation details. The leading-order error term of an existing model may be

used to create a new, advanced computational model that provides greater numerical accuracy.

Logical-Coordinate Evaluation
Logical-coordinate evaluation refers to the spatial-transformation of a position vector

from global, physical-space to a local, cell-based coordinate system. Logical-coordinates are

often used within interpolation functions to exchange data between particles and discretized

continuum-fields. These coordinates are also generally used within localization algorithms to

establish a particle’s position within the entire discretized domain. Interpolation functions are

often used for spatial transformation because they can provide a general relationship between

physical and logical coordinates. Discrete-expansions represent the mathematical expression that

allows interpolation functions to evaluate a particle’s logical-coordinates. The discrete-expansion

presented in Equation 29 may be rewritten for this purpose as presented in Equation 31.

(31)

The discrete-expansion in Equation 31 is valid between two particles, States 1 and 2,

located in separate, non-contiguous grid cells. For logical-coordinate evaluation, the coordinate

vectors defined at State 1 are known: ,  and . The only restriction on these vectors is

that they must form a consistent set of coordinates as described by the interpolation function:

. The only coordinates known at State 2 are the physical-coordinates of the

particle, . The cell-searching portion of the localization algorithm does, however, identify a

guessed cell for the particle at State 2, which provides cell-vertex coordinates, . The only

unknown vector is the logical-coordinate vector at State 2, , which is the desired solution.

The interpolation derivatives within Equation 31 are not functions of the solution vector,

however, elements of  appear on the right-hand-side of the discrete-expansion. An iterative

solution strategy, one that lags the second-order derivative term, can be applied to Equation 31 to

obtain the vector, . The logical-coordinates at State 2 are then evaluated as ,

where ‘i’ is an iteration index, and the initial solution guess, , is typically the null vector.
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The scalar-multiples of the lagged second-order derivative are defined as  and

. The iterative solution of Equation 31 can be monitored with the State 2

difference vector , and assumed converged when this vector satisfies a tolerance

criterion. At convergence, the vectors  and  are non-zero finite differences.

The most important feature of Equation 31 is that the discrete-expansion is defined

between two fixed particle positions. State 2 is absolutely fixed, invariant throughout the

localization problem, by the particle’s physical-coordinates, . Logical-coordinate evaluation

completes the definition of State 2 by providing the coordinate vectors  and . In contrast,

State 1 is arbitrarily fixed; its position within the computational grid is constrained only by the

requirement that . Therefore, a bound  vector may be selected for use within

Equation 31 that guarantees a non-singular Jacobian matrix and, thus, an algorithmically robust

evaluation method. Furthermore, the solution of Equation 31 for  is computationally efficient;

all of its derivatives are constant and only require a single evaluation. Inversion of the Jacobian

matrix is then only required once, and it may be reused throughout the iterative solution.

In contrast, existing logical-coordinate evaluation methods, developed from a truncated,

single-variable Taylor’s series expansion [46,67,69,71,72], are neither robust nor efficient. The

most salient feature of these methods is that their expansions are written relative to a variable

particle position, State 1. While State 2 is absolutely fixed by the particles physical-coordinates,

, State 1 represents an intermediate position within the iterative solution process. These

logical-coordinate evaluation methods are not algorithmically robust; if the particle resides

outside of the guessed cell and the grid is sufficiently distorted,  is unbound and the Jacobian

matrix may become singular, and their iterative solution then fails to converge. Furthermore, these

evaluation methods are not computationally efficient; their iterative solution strategy requires the

repeated evaluation and inversion of an interpolation derivative, the Jacobian matrix.

The discrete-expansion in Equation 31 represents a general solution method for logical-

coordinate evaluation. First, Equation 31 provides a robust and efficient evaluation method that is

valid throughout the discretized domain, including between separate, non-contiguous grid cells.

Second, if  and the higher-order derivative is ignored, the existing evaluation methods

may be obtained from Equation 31. Within these methods, the geometry-transformation matrix is

nullified since , and the Jacobian matrix and the physical-coordinates at State 1 are

defined with an intermediate solution vector, . At convergence, States 1 and 2 are identical:

. Finally, if Equation 31 is applied for linear spatial-transformation, such as triangular

cell geometries, the Jacobian matrix is constant and the second-order derivative vanishes. Only a

single solution of the discrete-expansion is then required to compute a logical-coordinate vector.
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Summary

The objective of this research was to develop and verify discrete-expansions for bilinear

interpolation defined within quadrilateral cell geometries. Interpolation expansions are required

by particle methods for two purposes: numerical analyses used to establish the method’s

consistency and accuracy, and logical-coordinate evaluation used to locate particles within a grid.

Discrete-expansions are similar to multi-variable series expansions but, unlike a Taylor’s series,

they are valid throughout a discretized domain. Eight discrete-expansions were developed by

parametrically integrating the bilinear interpolation functions total-differential between two

particles located within separate, non-contiguous cells. This new development method was also

applied to one-dimensional interpolation defined within line-elements. A two-dimensional test

problem then verified the enhanced capabilities of the new total-differential discrete-expansions.

For any computational model that uses interpolation, discrete-expansions represent a key

advancement; they provide the capacity to analytically define a model’s leading-order error term

and, therefore, establish the mathematical consistency and numerical accuracy of existing models.

Discrete-expansions also provide the capacity to develop advanced models; the leading-order

error term of an existing model may be used to a create a new model with greater accuracy.

Furthermore, one of new discrete-expansions represents a general solution method for evaluating

logical-coordinates, which are used to locate particles within a grid. The iterative solution of this

expansion, which is valid throughout a discretized domain, is algorithmically robust and

computationally efficient. Finally, this discrete-expansion, which may be simplified to obtain the

existing evaluation methods, does not require an iterative solution process to compute logical-

coordinate vectors for linear spatial-transformation functions.
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Appendix A: Test Problem

The purpose of this appendix is to verify that the eight discrete-expansions presented in

this report, developed for bilinear interpolation using the total-differential method, are valid

across quadrilateral cell boundaries. While the following verification has been performed for each

expansion in Equations 16, 22 and 28, in this appendix, only one discrete-expansion is used to

solve the general problem of two particles located in separate, non-contiguous grid cells. The

discrete-expansion selected for this demonstration, originally presented in Equation 16 and

repeated in Equation A-1, was obtained using the direct integration pathline.

(A-1)

The test problem selected for this demonstration includes two particles, defined as State 1

and State 2, located in two separate, non-contiguous and non-orthogonal quadrilateral cells; see

Figure 4. Recall that a particle’s state is defined by a set of physical-coordinates, ,

logical-coordinates, , and cell-vertex coordinates, . The

cell-vertex coordinate vector may also be described as . The

only restriction on the two particle states is that they each form a consistent set of coordinates as

described by the bilinear interpolation function: . For the problem shown in

Figure 4, the two particle states are defined in Equations A-2 and A-3.

(A-2)

(A-3)

The discrete-expansion in Equation A-1 includes two first-order interpolation derivatives,

the transformation matrices  and , and one second-order derivative, .

The second-order derivative is evaluated with the finite-difference vector, . In contrast, both

transformation matrices in Equation A-1 are evaluated with average logical-coordinates and

average cell-vertex coordinates:  and . For the problem

shown in Figure 4, these average vectors are presented in Equation A-4.
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(A-4)

The first-order interpolation derivatives in Equation A-1 are scaled by the finite-difference

vectors  and . The second-order interpolation derivative is

multiplied by both elements of the logical-coordinate finite-difference vector:  and . For

the problem shown in Figure 4, these finite-difference vectors are presented in Equation A-5.

(A-5)

The Jacobian matrix in Equation A-1, , was presented in Equation 3 for two-

dimensional coordinate transformations. The elements of this matrix were defined in Equations 4

and 5. The geometry-transformation matrix, , was presented in Equation 6. The product

of this matrix and the finite-difference vector, , is presented in Equation A-6.

(A-6)

As previously noted, the non-square geometry-transformation matrix may be partitioned

into square sub-matrices:  where . The non-zero elements of each

diagonal sub-matrix are identical; they are one of the four bilinear interpolation basis functions.

Each sub-matrix may then be described as an identity matrix scaled by a basis function. The

matrix-vector product in Equation A-6 may then be simplified as presented in Equation A-7.

(A-7)

The second-order interpolation derivative in Equation A-1, , is simply a

combination of cell-vertex coordinate vectors as presented in Equation A-8.
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(A-8)

The bilinear interpolation derivatives and coordinate finite-difference vectors required by

each discrete-expansion presented in this report have been defined analytically. The interpolation

derivatives were presented as a function of the vectors  and . In contrast, the interpolation

derivatives in Equation A-1 are evaluated with either the average vectors  and  or the finite-

difference vector . For the problem shown in Figure 4, these vectors were presented in

Equations A-4 and A-5. The algebraic form of Equation A-1 applied to the problem in Figure 4,

including matrices, vectors and their products, is presented in Equation A-9.

(A-9)

Equation A-9 correctly predicts the change in particle physical-coordinates between State

1 and State 2: . The symmetry of the Jacobian matrix and the second-order

derivative in Equation A-9 is not an inherent feature of discrete-expansions. Instead, this feature

is an artifact of the test problem. The simplified system-of-equations does not diminish the test

problems appropriateness or this discrete-expansions validity; all terms within Equation A-1 are

non-zero and numerous other test problems have been successfully conducted. Therefore, this test

problem clearly demonstrates that the eight discrete-expansions presented in this report are valid

bilinear interpolation expansions across quadrilateral cell boundaries.
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Appendix B: Linear Interpolation

The purpose of this appendix is to develop discrete-expansions for a linear interpolation

function defined within line-elements. The following one-dimensional development is nearly

identical to the previous development in this report for bilinear interpolation. Discussion of the

total-differential method will, therefore, be limited in the following sections. While the bilinear

discrete-expansions may be simplified for one-dimensional line-elements, additional expansions

for linear interpolation are presented below that are not included in the two-dimensional solutions.

Furthermore, the linear discrete-expansions are presented here for completeness; discrete-

expansions for bilinear interpolation are presented in this report, and they have been previously

reported for trilinear interpolation using the finite-difference method [73-75].

One-dimensional computational space may be discretized into line-elements. Linear

functions are generally defined within these elements for data interpolation and spatial

transformation. Spatial transformation involves mapping the line-element geometry from a

physical, , to a logical, , coordinate system where . The one-dimensional

interpolation function is linear with respect to both the logical coordinate and the cell-vertex (cv)

coordinate vector, , as presented in Equation B-1.

(B-1)

Total Differential

Using the linear function, , the objective is to establish a relationship between

the finite change of the physical coordinate, , the logical coordinate, , and the cell-vertex

coordinates, . The linear function’s total-differential provides a relationship between

infinitesimal changes of these vectors, , as presented in Equation B-2.

(B-2)

Logical Coordinate Derivative
The first derivative in the linear interpolation function’s total-differential, Equation B-2,

represents a coordinate-transformation or Jacobian matrix, . The Jacobian matrix is

defined in Equation B-3 for a one-dimensional transformation.

(B-3)
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Cell-Vertex Coordinate Derivative
The second derivative in the linear interpolation function’s total-differential, Equation B-

2, represents a geometry-transformation matrix. The matrix structure of , the cell-vertex

coordinate derivative, is defined in Equation B-4 for a one-dimensional transformation.

(B-4)

Elements of the geometry-transformation matrix,  and , are identical to

the basis functions used for linear interpolation as presented in Equation B-5.

(B-5)

The coordinate-transformation matrix, , is linear with respect to .

Similarly, the geometry-transformation matrix, , is linear with respect to . The

linear interpolation function’s simplified total-differential is presented in Equation B-6.

(B-6)

Integration Method

The objective is to integrate the linear function’s total-differential, Equation B-6, to obtain

a discrete-expansion for interpolation: . The limits of integration are two

particles located in separate, non-contiguous elements: State 1, , and State 2,

. Integration of the total-differential is represented in Equation B-7.

(B-7)

The interpolation derivatives,  and , must both be continuous for the

function’s total-differential to be valid. While interpolation functions are continuous at the

boundaries of adjoining grid elements, the interpolation derivatives are generally not continuous

across element boundaries. The linear interpolation function’s total-differential is, therefore, not

valid between particles located in separate grid elements.
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Parameterization
The integration coordinate-space can, however, be parameterized using a linear technique

with the variable ‘s’, where . The parameterized coordinates, ,  and ,

are then embedded in the interpolation function. The parameterized interpolation derivatives are

continuous along the integration pathline. Integration of the parameterized total-differential, with

appropriate limits of integration, is represented in Equation B-8.

(B-8)

Solution of Equation B-8 requires definition of an integration pathline between the

particle States 1 and 2. Three integration pathlines described within the  plane were

selected by this research: direct, upper-step and lower-step integration pathlines.

Direct Integration Pathline
The first integration pathline used to solve Equation B-8 is a straight or direct line between

particle States 1 and 2; see Figure 3. The parametrized coordinates, which vary linearly along this

direct integration pathline, are presented in Equation B-9.

(B-9)

Solution of Equation B-8 along the direct integration pathline is represented in Equation

B-10, where the interpolation derivatives are appropriately labeled.

(B-10)

Derivatives of the parameterized coordinates are constant finite-difference vectors:

, , and . Integration of the parameterized

total-differential along the direct pathline can then be simplified as presented in Equation B-11.

(B-11)
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The parameterized transformation matrices,  and , are

formed by substituting  and  from Equation B-9 into Equations B-3 and B-5. These

interpolation derivatives are linear with respect to the variable ‘s’. The three discrete-expansions

most easily obtained using the direct integration pathline are presented in Equation B-12.

(B-12)

The first discrete-expansion in Equation B-12 is the one-dimensional equivalent of the

direct-pathline bilinear expansions in Equation 16. The remaining two discrete-expansions in

Equation B-12 are unique to linear interpolation. These expansions include coordinate and

geometry-transformation matrices that are both evaluated at either State 1 or State 2. An

additional Jacobian matrix, evaluated with the cell-vertex coordinate finite-difference vector,

, then appears as a correction factor for the single-state transformation matrices.

Upper-Step Integration Pathline
The second integration pathline used to solve Equation B-8 is comprised of two line-

segments between particle States 1 and 2 that form an upper-step within the  plane. The

first pathline segment is a line of constant  from State 1 to State A; see Figure 3. The second

pathline segment is a line of constant  from State A to State 2. The parameterized coordinates

for the upper-step integration pathline are presented in Equations B-13 and B-14.

(B-13)
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(B-14)

Solution of Equation B-8 along the upper-step integration pathline is represented in

Equation B-15, where the interpolation derivatives are appropriately labeled.

(B-15)

Along the first segment of the upper-step pathline from State 1 to State A, where  is

constant,  and . Alternately, along the second pathline

segment from State A to State 2, where  is constant,  and .

Along the entire pathline . Integration of the parameterized total-differential

along the upper-step pathline can then be simplified as presented in Equation B-16.

(B-16)

The parameterized transformation matrices are formed by substituting  and 

from Equations B-13 and B-14 into Equations B-3 and B-5. These interpolation derivatives are

linear with respect to the variable ‘s’. The single discrete-expansion most easily obtained using

the upper-step integration pathline is presented in Equation B-17.

(B-17)

The discrete-expansion in Equation B-17 is the one-dimensional equivalent of the upper-

step-pathline bilinear expansions in Equation 22. This expansion is also the one-dimensional

equivalent of the discrete-expansion obtained with the existing finite-difference method [73-75].
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Therefore, the total-differential and finite-difference methods of developing discrete-expansions

produce identical results for similar computational cell geometries.

Lower-Step Integration Pathline
The third integration pathline used to solve Equation B-8 is comprised of two line-

segments between particle States 1 and 2 that form a lower-step within the  plane. The

first pathline segment is a line of constant  from State 1 to State B; see Figure 3. The second

pathline segment is a line of constant  from State B to State 2. The parameterized coordinates for

the lower-step integration pathline are presented in Equations B-18 and B-19.

(B-18)

(B-19)

Solution of Equation B-8 along the lower-step integration pathline is represented in

Equation B-20, where the interpolation derivatives are appropriately labeled.

(B-20)
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entire pathline . Integration of the parameterized total-differential along the

lower-step pathline can then be simplified as presented in Equation B-21.

(B-21)

The parameterized transformation matrices are formed by substituting  and 

from Equations B-18 and B-19 into Equations B-3 and B-5. These interpolation derivatives are

linear with respect to the variable ‘s’. The single discrete-expansion most easily obtained using

the lower-step integration pathline is presented in Equation B-22.

(B-22)

The discrete-expansion in Equation B-22 is the one-dimensional equivalent of the lower-

step-pathline bilinear expansions in Equation 28. The discrete-expansions for linear interpolation

obtained with the upper-step and lower-step pathlines, Equations B-17 and B-22, are nearly

identical. While the form of these expansions are identical, the interpolation derivatives are

evaluated at opposite particle end-states; these pathlines are exact mirror images of each other.

Recall that the derivatives of the linear interpolation function are linear with respect to

both the logical-coordinate and cell-vertex coordinate vectors. The transformation matrices are

then easily manipulated, allowing other forms of the discrete-expansions than those presented in

Equations B-12, B-17, and B-22. The second expansion in Equation B-12, obtained using the

direct pathline, is equivalent to the upper-step expansion in Equation B-17. Similarly, the third

expansion in Equation B-12 is equivalent to the lower-step expansion in Equation B-22.

Discussion

For linear interpolation, Taylor’s series are not valid expansions across line-element

boundaries. In contrast, the discrete-expansions in Equation B-12, B-17, and B-22 acknowledge

the full functional dependence of interpolation and account for mapping discontinuities across

element boundaries. These expansions are, therefore, valid for numerical analyses. For logical-

coordinate evaluation, both the existing method and a new method based on the upper-step

discrete-expansion are algorithmically robust; the one-dimensional Jacobian matrix is not a

function of the unknown logical coordinate. The existing method does, however, still require an

iterative solution strategy for spatial-transformation. In contrast, the new evaluation method is

computationally efficient; Equation B-17 can be solved directly for logical-coordinate evaluation.
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Figures Continued
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